Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Adh Migr ; 18(1): 1-13, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38566311

RESUMEN

Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.


Asunto(s)
Desmogleína 2 , Desmosomas , Cadherinas , Uniones Intercelulares , Adhesión Celular
2.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38260513

RESUMEN

Endothelial cells (ECs) experience a variety of highly dynamic mechanical stresses. Among others, cyclic stretch and increased plasma membrane tension inhibit clathrin-mediated endocytosis (CME) in non-ECs cells. How ECs overcome such unfavorable, from biophysical perspective, conditions and maintain CME remains elusive. Previously, we have used simultaneous two-wavelength axial ratiometry (STAR) microscopy to show that endocytic dynamics are similar between statically cultured human umbilical vein endothelial cells (HUVECs) and fibroblast-like Cos-7 cells. Here we asked whether biophysical stresses generated by blood flow could favor one mechanism of clathrin-coated vesicle formation to overcome environment present in vasculature. We used our data processing platform - DrSTAR - to examine if clathrin dynamics are altered in HUVECs grown under fluidic sheer stress (FSS). Surprisingly, we found that FSS led to an increase in clathrin dynamics. In HUVECs grown under FSS we observed a 2.3-fold increase in clathrin-coated vesicle formation and a 1.9-fold increase in non-productive flat clathrin lattices compared to cells grown in static conditions. The curvature-positive events had significantly delayed curvature initiation in flow-stimulated cells, highlighting a shift toward flat-to-curved clathrin transitions in vesicle formation. Overall, our findings indicate that clathrin dynamics and CCV formation can be modulated by the local physiological environment and represents an important regulatory mechanism.

3.
Sci Rep ; 13(1): 13609, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604968

RESUMEN

Diverse cellular processes, including membrane traffic, lipid homeostasis, cytokinesis, mitochondrial positioning, and cell motility are critically dependent on the Sec7 domain guanine nucleotide exchange factor GBF1. Yet, how the participation of GBF1 in a particular cellular function is regulated is unknown. Here, we show that the phosphorylation of specific highly conserved serine and tyrosine residues within the N-terminal domain of GBF1 differentially regulates its function in maintaining Golgi homeostasis and facilitating secretion versus its role in cytokinesis. Specifically, GBF1 mutants containing single amino acid substitutions that mimic a stably phosphorylated S233, S371, Y377, and Y515 or the S233A mutant that can't be phosphorylated are fully able to maintain Golgi architecture and support cargo traffic through the secretory pathway when assessed in multiple functional assays. However, the same mutants cause multi-nucleation when expressed in cells, and appear to inhibit the progression through mitosis and the resolution of cytokinetic bridges. Thus, GBF1 participates in distinct interactive networks when mediating Golgi homeostasis and secretion versus facilitating cytokinesis, and GBF1 integration into such networks is differentially regulated by the phosphorylation of specific GBF1 residues.


Asunto(s)
Citocinesis , Aparato de Golgi , Fosforilación , Sustitución de Aminoácidos , Homeostasis
4.
Biophys J ; 122(4): 595-602, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36659851

RESUMEN

Protein interactions with the plasma membrane mediate processes critical for cell viability such as migration and endocytosis, yet our understanding of how recruitment of key proteins correlates with their ability to sense or induce energetically unfavorable plasma membrane shapes remains limited. Simultaneous two-wavelength axial ratiometry (STAR) microscopy provides millisecond time resolution and nanometer axial resolution of protein dynamics at the basal plasma membrane. However, STAR microscopy requires extensive and time-consuming quantitative data processing to access axial (Δz) information. Therefore, addressing questions about the influence of biological and biophysical factors on the interaction between the plasma membrane and protein of interest remains challenging. Here, we overcome the limitations in STAR data processing and present dynamic reference STAR (DrSTAR): a user-friendly, automated, open-source MATLAB-based package. DrSTAR enables processing multiple experimental conditions and biological replicates, employs a novel local background referencing algorithm, and accelerates processing time to facilitate broad adaptation of STAR for studying nanometer axial changes in protein distribution.


Asunto(s)
Microscopía , Proteínas , Algoritmos , Membrana Celular
5.
Int J Biochem Cell Biol ; 156: 106349, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566777

RESUMEN

Understanding of how energetically unfavorable plasma membrane shapes form, especially in the context of dynamic processes in living cells or tissues like clathrin-mediated endocytosis is in its infancy. Even though cutting-edge microscopy techniques that bridge this gap exist, they remain underused in biomedical sciences. Here, we demystify the perceived complexity of these advanced microscopy approaches and demonstrate their power in resolving nanometer axial dynamics in living cells. Total internal reflection fluorescence microscopy based approaches are the main focus of this review. We present clathrin-mediated endocytosis as a model system when describing the principles, data acquisition requirements, data interpretation strategies, and limitations of the described techniques. We hope this standardized description will bring the approaches for measuring nanoscale axial dynamics closer to the potential users and help in choosing the right approach to the right question.


Asunto(s)
Clatrina , Endocitosis , Microscopía Fluorescente/métodos , Membrana Celular/metabolismo , Clatrina/metabolismo
6.
Nat Commun ; 13(1): 1732, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365614

RESUMEN

Clathrin polymerization and changes in plasma membrane architecture are necessary steps in forming vesicles to internalize cargo during clathrin-mediated endocytosis (CME). Simultaneous analysis of clathrin dynamics and membrane structure is challenging due to the limited axial resolution of fluorescence microscopes and the heterogeneity of CME. This has fueled conflicting models of vesicle assembly and obscured the roles of flat clathrin assemblies. Here, using Simultaneous Two-wavelength Axial Ratiometry (STAR) microscopy, we bridge this critical knowledge gap by quantifying the nanoscale dynamics of clathrin-coat shape change during vesicle assembly. We find that de novo clathrin accumulations generate both flat and curved structures. High-throughput analysis reveals that the initiation of vesicle curvature does not directly correlate with clathrin accumulation. We show clathrin accumulation is preferentially simultaneous with curvature formation at shorter-lived clathrin-coated vesicles (CCVs), but favors a flat-to-curved transition at longer-lived CCVs. The broad spectrum of curvature initiation dynamics revealed by STAR microscopy supports multiple productive mechanisms of vesicle formation and advocates for the flexible model of CME.


Asunto(s)
Clatrina , Endocitosis , Membrana Celular/metabolismo , Clatrina/metabolismo , Vesículas Cubiertas por Clatrina/metabolismo , Microscopía Fluorescente
7.
Methods Mol Biol ; 2438: 45-58, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147934

RESUMEN

The establishment of apicobasal or planar cell polarity involves many events that occur at or near the plasma membrane including focal adhesion dynamics, endocytosis, exocytosis, and cytoskeletal reorganization. It is desirable to visualize these events without interference from other regions deeper within the cell. Total internal reflection fluorescence (TIRF) microscopy utilizes an elegant optical sectioning approach to visualize fluorophores near the sample-coverslip interface. TIRF provides high-contrast fluorescence images with limited background and virtually no out-of-focus light, ideal for visualizing and tracking dynamics near the plasma membrane. In this chapter, we present a general experimental and analysis TIRF pipeline for studying cell surface receptor endocytosis. The approach presented can be easily applied to study other dynamic biological processes at or near the plasma membrane using TIRF microscopy.


Asunto(s)
Endocitosis , Colorantes Fluorescentes , Membrana Celular , Exocitosis , Microscopía Fluorescente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...